Уравнение и анализ теоретического профиля ротора героторного компрессора

Т.Н. Мустафин, Г.Н. Чекушкин, М.С. Хамидуллин
(Казанский государственный технологический университет),
И.Г. Хисамеев (ЗАО «НИИтурбокомпрессор им. В.Б. Шеппана»)

Приводятся вывод и результаты анализа теоретического окружного круномодульного профиля внутреннего зацепления, который может быть использован в героторной компрессорной схеме. Вывод уравнения основан на раскрытии соответствующего икобина. Анализ профиля и линии зацепления дан с точки зрения образования профильных зазоров и влияния их на профильные перетеки газа между соседними камерами.

Ключевые слова: героторный компрессор, уравнение зацепления, теоретический профиль, анализ зацепления.

The equation and analysis of theoretical profile of gerotor compressors internal rotor
T.N. Mustaфин, G.N. Chekushkin, M.S.Khamidullin, I.G. Khisameev
The following article covers the derivation and the results of analysis of theoretical circumferential heavy modulus profile of the internal gearing/ the profile can be used in gerotor compressors diagram. The equation derivation is based on writing of the corresponding Jacobian determinant. The analysis of the profile and the engagement line is given from the point of view of profile clearances formation and their effect upon the gas profile overflows between the adjacent chambers.

Key words: gerotor compressor, equation of gearing, theoretical profile, analysis of gearing.

Рис. 1. Пояснение к параметрическому уравнению роликов

При проектировании роторных компрессоров (РК) неизбежно приходится иметь дело с профилированием роторов, решая при этом ряд задач с целью соответствия следующим требованиям:

- непрерывность во времени и пространстве линии зацепления, образованной роторами;
- хорошее уплотнение зазоров, как между роторами, так и между роторами и корпусом, достижимое путем минимизации до необходимых значений профильных зазоров и рациональным выбором формы профиля;
- минимизация перевальных и защемленных объемов;
- хороший коэффициент использования объема корпуса для уплотнения массогабаритных показателей;
- возможность изготовления роторов простым, высокопроизводительным способом (при этом простым должно быть изготовление оси и режущего инструмента, кроме того желательно использовать для изготовления серийные общепромышленные станки).

Эти требования должны быть соблюдены как на стадии теоретического, так и на стадии действительного профилирования. Задача выбора исходного профиля усложняется тем фактом, что перечисленные требования зачастую вступают в противоречие друг с другом.

В предлагаемом роторном компрессоре [1] исходным для расчета сопряженного профиля является профиль внутреннего ротора. При этом с целью упрощения профилирования профиля наружного ротора при профилировании предусматривается контакт между роторами не по всей поверхности наружного ротора, а лишь по его роликам, т. е. теоретический профиль внутреннего ротора есть огибающая роликов наружного ротора. Дальнейший

анализ предлагаемой задачи невозможен без получения теоретического профиля внутреннего ротора (его уравнение). Решение аналогичной задачи для окружного профиля ротора винтового компрессора (ротор наружного зацепления) показано в работах [2, 3]. В данной статье рассматривается вывод уравнения теоретического профиля внутреннего ротора (ротор внутреннего зацепления) с целью последующего анализа для определения целесообразности его использования.

Параметрическое уравнение роликов в подвижной системе координат \(X_1' O_1' Y_1' \), жестко связанной с наружным ротором (рис. 1), принимает следующий вид:

\[
\begin{align*}
X'_{11} &= OA - r \cos(\psi), \\
Y'_{11} &= r \sin(\psi),
\end{align*}
\]

где \(OA \) — расстояние от центра окружности роликов до начала координат; \(\psi \) — параметр профиля, в качестве которого принят угол между общей нормально к сопряженным профилям в точке касания и осью абсцисса \(O_1' X_1' \); \(r \) — радиус огибаемых роликов.

Параметрическое уравнение теоретического профиля внутреннего ротора находят в системе координат \(X_2' O_2' Y_2' \), жестко с ним связанной (рис. 2), для че-
го уравнение (1) переписывается в данной системе координат:

\[
\begin{align*}
X_2 &= OA \cos(\psi_1 - \psi_2) - r \cos(\psi_1 - \psi_2 - \psi) - e \cos(\psi_2) \\
Y_2 &= OA \sin(\psi_1 - \psi_2) - r \sin(\psi_1 - \psi_2 - \psi) - e \sin(\psi_2),
\end{align*}
\]

где, \(\psi_1, \psi_2\) - углы поворота от исходного положения соответственно наружного и внутреннего роторов; \(e\) - эксцентриситет делительных окружностей обоих роторов.

Принимая во внимание понятие передаточного отношения зубчатого зацепления

\[i_{21} = \frac{\psi_2}{\psi_1}\]

а также вводя новый параметр

\[k = i_{21} - 1,

уравнение можно записать в следующей форме:

\[
\begin{align*}
X_2 &= OA \cos(k \psi_1) - r \cos(k \psi_1 + \psi) - e \cos(i_{21} \psi_1) \\
Y_2 &= -OA \sin(k \psi_1) - r \sin(k \psi_1 + \psi) + e \sin(i_{21} \psi_1).
\end{align*}
\]

Уравнение (3) позволяет раскрыть составляющие якобиана

\[
\frac{\partial(X_2, Y_2)}{\partial(\psi_1, \psi)} = 0,
\]

которые после несложных математических преобразований окончательно примут вид

\[
\begin{align*}
\frac{\partial X_2}{\partial \psi_1} &= kY_2 + e \sin(i_{21} \psi_2) \\
\frac{\partial Y_2}{\partial \psi_1} &= -kX_2 + e \cos(i_{21} \psi_2) \\
\frac{\partial X_2}{\partial \psi} &= r \sin(k \psi_1 + \psi) \\
\frac{\partial Y_2}{\partial \psi} &= r \cos(k \psi_1 + \psi).
\end{align*}
\]

При подстановке соотношений (4) в якобиан получим уравнение линии зацепления ролика с внутренним ротором:

\[
\begin{align*}
[kY_2 + e \sin(i_{21} \psi_2)] & \cos(k \psi_1 + \psi) + \\
+ &[-kX_2 + e \cos(i_{21} \psi_2)] \sin(k \psi_1 + \psi) &= 0,
\end{align*}
\]

где \(e = r_{1H} - r_{2H} = kr_{2H};

\(r_{1H}, r_{2H}\) - радиусы делительных окружностей соответственно наружного и внутреннего роторов.

После подстановки в уравнение (5) соотношения (6) и сокращения заведомо ненулевых членов уравнение (5) примет вид

\[
Y_2 \cos(k \psi_1 + \psi) + X_2 \sin(k \psi_1 + \psi) + r_{2H} \sin(\psi_1 - \psi) = 0.
\]

Уравнение (7) позволяет получить связь между \(\psi_1\) и \(\psi\) в явном виде. С этой целью в уравнение (7) надо подставить соотношения из уравнения (3) и по окончанию математических преобразований с учетом соотношения (6) уравнение (7) принимает вид

\[
OA \sin \psi + r_{1H} \sin(\psi_1 - \psi) = 0
\]

или

\[
(OA - r_{1H} \cos \psi_1) \sin \psi + r_{1H} \sin \psi_1 \cos \psi = 0
\]

Тогда при условии, что \(\cos \psi \neq 0\), имеет место следующее соотношение:

\[
\psi = \arctg \left[\frac{r_{1H} \sin \psi_1}{r_{1H} \cos \psi_1 - OA} \right].
\]

Окончательно уравнение теоретического профиля внутреннего ротора получим при подстановке уравнения (9) в уравнение (3):

\[
\begin{align*}
X_2 &= OA \cos(k \psi_1) - r \cos(k \psi_1 - \arctg(\frac{r_{1H} \sin \psi_1}{r_{1H} \cos \psi_1 - OA})) \\
&- \cos(i_{21} \psi_1), \\
Y_2 &= -OA \sin(k \psi_1) + r \sin(k \psi_1 + \arctg(\frac{r_{1H} \sin \psi_1}{r_{1H} \cos \psi_1 - OA})) + \\
&+ \sin(i_{21} \psi_1),
\end{align*}
\]

Уравнение (10) позволяет получить массив координат теоретического профиля внутреннего ротора; для этого угол \(\psi_1\) должен меняться в пределах \(0 \ldots 2\pi Z_1\) (для зубьев внутреннего ротора). Преобразуя уравнения (10) в неподвижную систему координат \(X_1 Y_1\) (см. рис. 2), получаем уравнение линии зацепления:

\[
\begin{align*}
X_K &= OA \cos \psi_1 - r \cos \psi_1 - \arctg(\frac{r_{1H} \sin \psi_1}{r_{1H} \cos \psi_1 - OA}) \\
Y_K &= OA \sin \psi_1 - r \sin \psi_1 - \arctg(\frac{r_{1H} \sin \psi_1}{r_{1H} \cos \psi_1 - OA}).
\end{align*}
\]
Рис. 3. Результаты расчета теоретического профиля внутреннего ротора

Путем небольшой коррекции величин, входящих в уравнение (10), компенсирующей технологические погрешности изготовления и тепловые деформации роторов, можно получить координаты действительных роторов.

Результаты, полученные для теоретической схемы с передаточным отношением 3/4, экцентрицитетом роторов 12,5 мм, диаметром ролика 25 мм и экцентрицитетом роликов по отношению к оси наружного ротора 62,5 мм, представлены на рис. 3.

Уравнения (10) и (11) позволяют анализировать получаемые профили с точки зрения приемлемости их использования в компрессоростроении. Как показывает анализ, линия зацепления в них неразрывна, теоретический мертвый объем у них отсутствует. Анализ профильных щелей проводится по кривизне профиля в точке контакта [4], характеризующей уплотнительность профильных щелей. Последняя определяется по формуле

\[K_r(\psi) = \frac{d^3 x}{dy^3} - \left(\frac{d^2 y}{dy^2} \right) \left(\frac{d x}{dy} \right)^2. \]

Для анализа удобно использовать смещение начала отсчета на угол – π/4. Последний фактор принят также для удобства, так как в этом случае начало отсчета ведется от минимального объема рабочей полости. График зависимостей кривизны внутреннего ротора в точке контакта по углу поворота представлен на рис. 4.

При анализе полученной зависимости можно использовать вывод о том, что наименьшей глубиной дросселирования обладают щели, образованные по верхностями с кривизной различными знаков в точке контакта [2, 3, 5]. Следовательно, такие щели обладают наибольшим потенциалом в отношении перетечек газа через них при прочих равных условиях. С учетом того, что контакт наружного ротора возможен лишь по роликам, т.е. его кривизна в точке контакта всегда постоянна и имеет отрицательный знак, можно сделать вывод, что наименьше уплотненные профильные щели возникают на стороне окна вставления, где перепад давлений между соседними рабочими полостями либо отсутствует, либо незначителен. На основании этого можно сделать положительный вывод о хорошем потенциале уплотнительности профильных щелей в исследуемой схеме компрессора.

Все изложенное позволяет дать положительное заключение о применимости исследуемого профиля в компрессорной схеме: его линия зацепления проистекает и непрерывна; он обладает хорошей уплотняемостью профильных щелей; перекаловый (мертвый) объем в теоретическом зацеплении может быть своден к минимуму (до полного отсутствия); коэффициент использования объема корпуса в исследуемой схеме превосходит аналогичные коэффициенты спиральных компрессоров; изготовление профильной кривой внутреннего ротора может быть достигнуто на станках общепромышленного применения с использованием специального приспособления, изготовление которого не вызывает особых технологических трудностей.

Список литературы
5. Захаренко С.Е. К вопросу о перетечках газа через щели//Л.: Тр. ЛПИ. 1953. №2.